New insights into the structure and mechanism of iodothyronine deiodinases.

نویسندگان

  • Ulrich Schweizer
  • Clemens Steegborn
چکیده

Iodothyronine deiodinases are a family of enzymes that remove specific iodine atoms from one of the two aromatic rings in thyroid hormones (THs). They thereby fine-tune local TH concentrations and cellular TH signaling. Deiodinases catalyze a remarkable biochemical reaction, i.e., the reductive elimination of a halogenide from an aromatic ring. In metazoans, deiodinases depend on the rare amino acid selenocysteine. The recent solution of the first experimental structure of a deiodinase catalytic domain allowed for a reappraisal of the many mechanistic and mutagenesis data that had been accumulated over more than 30 years. Hence, the structure generates new impetus for research directed at understanding catalytic mechanism, substrate specificity, and regulation of deiodinases. This review will focus on structural and mechanistic aspects of iodothyronine deiodinases and briefly compare these enzymes with dehalogenases, which catalyze related reactions. A general mechanism for the selenium-dependent deiodinase reaction will be described, which integrates the mouse deiodinase 3 crystal structure and biochemical studies. We will summarize further, sometimes isoform-specific molecular features of deiodinase catalysis and regulation, and we will then discuss available compounds for modulating deiodinase activity for therapeutic purposes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Iodothyronine Deiodinase Activity as Studied in Thyroidectomized Rats Infused with Thyroxine or Triiodothyronine.

To provide new insights into the in vivo regulation of iodothyronine deiodinases in the different tissues of the rat, we have evaluated the effects on these enzymatic activities of T4 or T3 infusions into thyroidectomized rats. Thyroidectomized rats were infused with placebo, T4, or T3. Placebo-infused intact rats served as euthyroid controls. Plasma and samples of cerebral cortex, brown adipos...

متن کامل

Crystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism.

Local levels of active thyroid hormone (3,3',5-triiodothyronine) are controlled by the action of activating and inactivating iodothyronine deiodinase enzymes. Deiodinases are selenocysteine-dependent membrane proteins catalyzing the reductive elimination of iodide from iodothyronines through a poorly understood mechanism. We solved the crystal structure of the catalytic domain of mouse deiodina...

متن کامل

Computational insights into fluconazole resistance by the suspected mutations in lanosterol 14α-demethylase (Erg11p) of Candida albicans

Mutations in the ergosterol biosynthesis gene 11 (ERG11) of Candida albicans have been frequently reported in fluconazole-resistant clinical isolates. Exploring the mutations and their effect could provide new insights into the underlying mechanism of fluconazole resistance.  Erg11p_Threonine285Alanine (Erg11p_THR285ALA), Erg11p_Leucine321Phenylalanine (Erg11p_LEU321PHE) and Erg11p_Serine457Pro...

متن کامل

New Insights into the Effect of Diabetes and Obesity in Alzheimer’s Disease

Abstract Alzheimer’s disease (AD) is the most common cause of dementia in elderly people. The prevalence of Alzheimer diseases is increasing in the world due to population aging. Metabolic disease such as diabetes and obesity play important role in Alzheimer disease. Hyperglycemia can play important role in brain damage. It causes cognitive impairments, functional and structural alterations in...

متن کامل

Characterization of an iodothyronine 5'-deiodinase in gilthead seabream (Sparus auratus) that is inhibited by dithiothreitol.

Iodothyronine deiodinases catalyze the conversion of the thyroid prohormone T(4) to T(3) by outer ring deiodination (ORD) of the iodothyronine molecule. The catalytic cycle of deiodinases is considered to be critically dependent on a reducing thiol cosubstrate that regenerates the selenoenzyme to its native state. The endogenous cosubstrate has still not been firmly identified; in studies in vi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular endocrinology

دوره 55 3  شماره 

صفحات  -

تاریخ انتشار 2015